
 

 

 

 

 

 

NAO Watchdog 

Jessel Serrano 

 

Final Draft 

06 December 2013 

 

CNT 4104 Software Project in Computer Networks 

Instructor: Dr. Janusz Zalewski 

Computer Science & Software Engineering Programs 

Florida Gulf Coast University 

Ft. Myers, FL 33965 

 

 

 

  



Serrano 2 

1. Introduction 

         Security is becoming a major issue in modern technology. Both physical security and 

cyber security constantly need to be updated to keep up with the progressing pace of technology 

and society. This project report focuses on the NAO robot [1] as a dynamic security camera. In a 

world where security is becoming a major priority, the NAO robot can potentially provide a 

crucial security element through its integrated sensors. The robot (Figure 1) contains a plethora 

of sensors that are optimally designed to locate and track objects. What is even more integrative 

is the NAO’s networking ability, as it allows the data it tracks to be uploaded to the web via its 

Wi-Fi module. This essentially allows the NAO robot to operate as a remote security camera that 

feeds live video across the Internet to a user in a different location. Not only is this security 

camera remote and can be accessed remotely, but it is a humanoid robot that can “watch” an 

object as it enters its view and keep constant track of the object. Such a technology no longer 

falls in the realm of an inanimate, automatically rotating camera, but rather constitutes an 

anthropomorphic ‘watchdog.’ 

  

 

Figure 1: The NAO Humanoid Robot  

 



Serrano 3 

2. Definition of the Problem 

The problem addressed in this project is how to turn the NAO robot into a security Watchdog. 

This will be accomplished by first expanding on the previous project by Austin Hughes [3], in 

which he details how to get the NAO robot up and running and how to begin to program the 

robot. Then, requirements are set which the robot must meet in order to be considered a 

Watchdog. The initial requirements are listed below: 

 

1. The NAO robot shall stream the video data across the Internet where a remote user can 

access the feed. 

2. The NAO robot shall utilize its camera and other sensors to determine if an object is 

present in its view. 

3. The NAO robot shall turn its head to keep objects and/or persons within its view. 

4. Optionally, the NAO robot shall recognize objects and/or persons as they enter the 

robot’s view. 

 

 In addition to the four main requirements set forth for this project, two networking 

requirements can also be set once the four main ones are met. They are as follows: 

1. The NAO robot shall be controlled remotely in order to provide further security options. 

2. The NAO robot shall be controlled remotely through a WebSocket user interface. 

The steps to be taken to complete the four main requirements are as follows: 

1. An application must be developed, using the NAOqi (Figure 2), which allows the 

accessing of the camera feed remotely. This is done by developing a program which 

makes several calls to the robot via the Internet. The robot will then return camera data. 

2. Then, the NAO robot must be programmed to utilize its camera to sense moving objects, 

such as animals or persons. This is done using the NAOqi, which is the NAO’s SDK. 

3. The robot must then be programmed to move its head as necessary to keep the camera 

pointed towards the object it is ‘watching.’ This can be done using the NAOqi SDK. 



Serrano 4 

 

Figure 2: NAOqi SDK -  

A few pre-existing methods and functions are in place from the NAOqi documentation API that 

are useful for this project: 

● The NAOqi has an AudioSourceLocalization module that allows the NAO to detect 

sound and where it is coming from. This module is useful in tracking human movement 

via stepping and walking.  

● The ALVideoDevice module controls the NAO’s two camera devices on its head. By 

accessing these cameras, the NAO can take pictures and save them in its internal 

memory. 

● The ALMemory module allows one to access the robot’s internal memory using certain 

keys. With certain methods and keys, one can retrieve, insert, or alter data in the NAO 

robot. 

● ALMovementDetection extractor enables to detect movements around the robot 

thanks to its camera. This method is used when no face is detected but there is movement 

in the NAO’s field of view. 

 



Serrano 5 

Furthermore, there is the ALMotion module that provides methods that facilitate movement 

for the NAO robot. For the purposes of this project, the head is used (where the twin cameras are 

located) to keep up with the objects detected. It contains four major groups of methods for 

controlling the: 

● Joint stiffness (basically motor On-Off) 

● Joint position (interpolation, reactive control) 

● Walk (distance and velocity control, world position and so on) 

● Robot effector in the Cartesian space (inverse kinematics, whole body constraints) 

Once the four main requirements are successfully met, one could use WebSockets in order to 

create a web accessible and graphical NAO interface, previously created by Austin Hughes [3]. 

There are two components in creating this web interface: 

1. Creating a server application 

2. Building a WebSocket client with HTML and JavScript. 

 

 

 

 

 

 

 

 

 

 

 



Serrano 6 

3. Design Solution 

This project has many parts that require the ‘Watchdog’ to be complete. These parts 

include hardware and software alike. For hardware, there are: 

● The NAO robot - Intel Atom @ 1.6 GHz, two HD 1280x960 cameras, Ethernet & Wi-Fi 

connections, 

● A client computer. 

The software side of this project utilizes some software that is native to the NAO robot and other 

components that are not. They include: 

● NAOqi – the NAO robot’s SDK, 

● The actual Watchdog program – to be written in Java and compiled into a JAR file, 

● Potentially WebSockets – which requires utilization of HTML and Javascript. 

 The completion of this project relies on the interaction of the NAO robot and the client 

computer, through a streaming of a live video feed from the NAO robot to the client. This is the 

objective of the design process. What lies underneath is the communication of the client and the 

NAO robot, with the client making calls to the NAO robot and the NAO robot returning data to 

the client through a network connection. 

 This communication is done via a Java program on the client side that uses the NAOqi to 

create proxies of the actual API that the NAO robot uses. These proxies include API from the 

ALAudioSourceLocalizationProxy and ALMotionProxy::setPosition(). The Source 

Localization API allows the robot to detect sound and where it is coming from. Combining this 

with the robot’s motion API allows the robot to locate sound and look at the object emitting the 

sound. The robot then begins to send back live images of the object to the client computer. 

Below is an example of how to initialize the Sound Localization Proxy and subscribe the device. 

ALAudioSourceLocalizationProxy locater = new 
ALAudioSourceLocalizationProxy(NAO_IP, NAO_Port); 

locator.subscribe(); 
 

Once subscribed, the robot begins to collect sound data and determine where it is coming from 

through the use of Interaural Time Difference [1], a mechanic which uses the four microphones 

on the NAO robot to determine which direction sound comes from. Figure 3 demonstrates how 

this works. The data are then stored on the robot in the memory under the key-value 



Serrano 7 

ALAudioSourceLocalization/SoundLocated. How the data are retrieved is shown in the 

code below using the Memory Proxy API: 

ALMemoryProxy memory = new ALMemoryProxy(IP, Port); 
memory.getData(“ALAudioSourceLocalization/SoundLocated”); 

  

Figure 3: Interaural Time Difference used to locate sound 

The data located in this memory are found to be in the format as follows [1]: 

[ [time(sec), time(usec)], 

 

  [azimuth(rad), elevation(rad), confidence], 

 

  [Head Position[6D]] 

] 

The important data are the azimuth and elevation angles. Because this is a 2-dimensional array, 

the azimuth and elevation angle data (in radians) are stored in array[1][0] and 

array[1][1], respectively. Using this array, one can find out where sound is coming from 

relative to the robot’s head. By extracting the 1st element of this 2-D array, the two angles can be 

used to turn the robot’s head in a certain position via the method 

ALMotionProxy::setAngles().  In this method, the first argument represents the body part 

to position and the second argument is the vector array of the position of the sound: 

robot.setAngles(“Head”, array[1][0], 0.1f); 

It should be noted that there are other methods to move the robot via its joints. These 

methods include setPosition() and angleInterpolation(). These methods, however, 

are blocking methods. This means the program is on pause until the robot finishes moving a 

certain body part. The setAngles() method is a non-blocking method. This means the 



Serrano 8 

program will continue to run even while the robot is moving. This non-blocking method offers 

more fluidity and faster responses, as per the NAO documentation [1], yet each has its own pros 

and cons. 

Once the robot’s head is in position, recording can begin with the robot taking pictures 

and sending them back to the client. This is executed using the ALVideoDevice module. Using 

a method called getImageRemote(), a client is able to retrieve an image directly from the 

NAO camera. This can be done up to 30 pictures per second, giving a ‘video’ of 30 frames per 

second. This is the live video feed. 

A diagram of how the NAO robot and the client computer interact is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Watchdog Illustration – Design Diagram 

 



Serrano 9 

4. Implementation 

 There are three basic parts of the Watchdog project that allow it to function: 

1. Audio Source Localization, 

2. Motion and Head Positioning, 

3. Video Transmission. 

4.1 Audio Source Localization 

 For this project, a method has been made to selectively determine the location of sound 

and retrieve the data of the direction of the sound from the robot’s memory. The method which 

does that is shown below. 

public static float[] soundLocalizer(ALAudioSourceLocalizationProxy 

loc) { 

      

     //Create the proxy for Memory 

     ALMemoryProxy mem =  

          new ALMemoryProxy(NAO_IP, NAO_PORT); 

      

     //Sets the audio sensibility to detect quiet or loud sounds 

     loc.setParameter("Sensibility", new Variant(0.9f)); 

 

        //Store data in Variant type 

     Variant soundData = new Variant(mem.getData( 

       ("ALAudioSourceLocalization/SoundLocated")));  

      

     //Converts Variant data to float array, 

     //just takes the azimuth and elevation angles 

     float[] pos = soundData.getElement(1).toFloatArray(); 

     System.out.println("azimuth: " + pos[0] + 

       " | Elevation: " + pos[1]); 

     return pos; 

    } 

This method returns a float array. Once the Sound Localizer Proxy is subscribed (not shown in 

this method), the robot begins to collect data on sound. It stores the data in the 

ALAudioSourceLocalization/SoundLocated key, in the form of an array (described in Section 3). 

Once the float array is obtained containing the azimuth and elevation angles, the position of the 

head can then be set so as to turn the head so that is faces the source of the sound, or the person 

making the sound. A respective call looks as shown below: 

float [] headPosition = soundLocalizer(); 

 

 



Serrano 10 

4.2 Motion and Head Positioning 

 Once the float array containing the position of the object emitting sound has been stored 

into the float array called headPosition, the robot can then use this information to position its 

head accordingly. Doing this does not take much code or conversion of types; a proxy for the 

Motion API is created and then the method to set the position is called. This is shown below: 

ALMotionProxy robot = new ALMotionProxy(NAO_IP, NAO_PORT); 
robot.wakeUp(); 
robot.setPosition("Head", 2, headPosition, 1f, 63); 
robot.rest(); 

The method setAngles() has three arguments which corresponds to different things. In the 

NAO documentation under motion classified as Cartesian [1], they are shown in the specification 

of the method: 

void ALMotionProxy::setAngles(const AL::ALValue& names, const 

AL::ALValue& angles, const float& fractionMaxSpeed)¶ 

Sets angles. This is a non-blocking call. 

Parameters: • names – The name or names of joints, chains, “Body”, 
“JointActuators”, “Joints” or “Actuators”. 

• angles – One or more angles in radians 

• fractionMaxSpeed – The fraction of maximum speed to use 

The chain name for this project includes the Head, which includes both HeadYaw and 

HeadPitch. HeadYaw and HeadPitch control the robot’s Head position as up/down and left/right.  

 The setAngles() method can also accommodate lists or arrays of names, angles, and 

speeds as arguments. This allows the robot to move multiple joints at the same time in one 

method call. This is illustrated below in the following code: 

robot.setAngles( new Variant( new String[]{"HeadYaw", "HeadPitch"}),  

           new Variant( new float[]{headPosition[0], 

headPosition[1]}), 0.1f); 

 

This one call tells the robot to yaw it Head however many azimuth radians and pitch its Head 

however many elevation radians. The speed has been set to the same for each movement.  

Once the position of the head has been set to look at the source of the sound, the robot 

can then begin taking pictures and sending it back to the client. 

 

 

 

https://community.aldebaran-robotics.com/doc/1-14/naoqi/stdtypes.html#void
https://community.aldebaran-robotics.com/doc/1-14/naoqi/stdtypes.html#AL::ALValue
https://community.aldebaran-robotics.com/doc/1-14/naoqi/stdtypes.html#AL::ALValue
https://community.aldebaran-robotics.com/doc/1-14/naoqi/stdtypes.html#AL::ALValue
https://community.aldebaran-robotics.com/doc/1-14/naoqi/stdtypes.html#float


Serrano 11 

4.3 Video Transmission 

 Instead of using the proxy for the Video Recorder on the NAO robot, the Video Device 

proxy is utilized instead. This is because the Video Recorder API records video and then stores it 

in the robot’s memory. One would then have to go into the memory and retrieve the video. 

However, the video would not be real-time, due to the retrieving of the video and then the 

playback. The Video Device API, however, allows the instant retrieval of pictures taken from the 

NAO robot using the getImageRemote()method. This is shown below: 

ALVideoDeviceProxy videoDevice = new ALVideoDeviceProxy(NAOQI_IP, 

NAOQI_PORT); 
    
videoDevice.subscribe("java", 1, 11, 250); 
Variant ret = videoDevice.getImageRemote("java"); 
videoDevice.unsubscribe("java"); 
 
// Video device documentation explain that image is element 6 
Variant imageV = ret.getElement(6); 
   
// display image from byte array 
byte[] binaryImage = imageV.toBinary(); 
 
new ShowImage(binaryImage); 

Once the image is retrieved, it is stored in the Variant type and accessed through another 

Variant type variable. It is then converted to a binary array, which is passed to the method 

ShowImage(). ShowImage() takes the binary array and creates the image that the robot 

took. This image is shown in a window created by Java. Once this process is looped infinitely, 

the robot will constantly be taking pictures and displaying it on the client’s window. This is 

equivalent to the live video feed of the object. 

In order for the pictures to display onto the client screen, a graphics component is 

implemented using Java’s graphics library, such as Swing. For this video feed, JFrame is used to 

create a window and then upload the picture into the window. In order to loop the program 

successfully, the image needs to be constantly refreshed in the JFrame window without 

constantly recreating the window. This is done using Java’s repaint() method, which clears 

the current window and allows a new image to be displayed. 

 

 

 



Serrano 12 

5. Experiments 

 Testing of the NAO Watchdog includes testing of each individual part (Audio Source 

Localizing, Head Positioning, and Video Transmission). Audio Source Localizing and Head 

Positioning are tested together as a unit in order to determine if the NAO can turn its head 

towards the source of sound successfully. Then, Video Transmission is tested to determine if the 

NAO can smoothly feed live images to the client computer. Once these parts are tested 

individually, it is all tested together to determine if the Watchdog successfully runs. 

 To run the whole program in two clicks, the client computer has to be connected to the 

network that the NAO robot is on. If necessary, the specific ports have to be open (9559) and the 

IP address has to be statically assigned to the NAO robot. After, double-clicking the 

Watchdog.jar file (shown in Figure 5), the NAO will start streaming video. The NAO will track 

sound by double-clicking the Watchdog_Track.jar file. When both files are run together, the 

NAO will become a dynamic security camera. 

                                           

Figure 5: Running the Watchdog program 

5.1 Audio Source Localizing & Head Positioning 

 In testing whether the NAO robot can turn its head towards the source of a sound, the 

Watchdog_Track.jar file is started. To start, double click the Watchdog_Track.jar file. When 

doing this in testing, however, the program ran without any way to stop it. To run the tracking 

program and stop it requires running the JAR file from the command prompt (or terminal for 

Macs).  

 To start the program in the command prompt or terminal, navigate to the directory where 

the JAR file is located. In the command prompt, type “java –jar Watchdog_Track.jar” without 

the quotes. In testing, doing this would sometimes give an error of Unsatisfied Link: Unable to 



Serrano 13 

locate library path. To fix this, the jNAOqi library JAR file is added to the directory containing 

the Watchdog_Track.jar file. The libjnaoqi.dll file (libnaoqi.jnilib on Macs) should also be in the 

directory as well. These library files can be found on NAO’s community website [1]. After, type 

into the command prompt: 

java –jar Watchdog_Track.jar –D java.library.path=”jnaoqi” 

This causes java to link the program to the NAO library, thereby allowing it to run. To close the 

program, on the keyboard press CTRL+C. 

Once the program runs, it loops infinitely as the NAO constantly locates sound and 

mathematically determines the angle and elevation of the source of the sound. The program 

prints the azimuth angle and the angle of elevation to the screen on the client computer. The 

robot will then turn its head using the azimuth angle and the angle of elevation to face the source 

of the sound. 

 In this test, the source of the sound is the snap of fingers. When the sound is produced, 

the robot’s head does not track the source very accurately. The head turns sparsely, and when it 

does it often overshoots the direction of the source. However, the robot’s head does face the 

source directly sometimes.  

 In order to diagnose this issue, the sensitivity of the Source Localization Device can be 

changed from anywhere between 0 and 1, where 1 is the most sensitive sounds. Changing the 

sensibility is done by the following call. 

locater.setParameter(“Sensibility”, new Variant(0.9f); 

The sensitivity in this test is set at 0.9, or very sensitive. This is so the NAO can detect footsteps 

or finger snaps easily. 

 When the sensitivity is set higher, the robot responds more often to noises. It turns its 

head toward the source more often. However, it does not “follow” a sound smoothly, often 

jerking its head “to see where the sound went.” 

 

 

 

 

 

 



Serrano 14 

5.2 Video Transmission 

 In testing whether the NAO robot can feed live images continuously first requires starting  

Watchdog.jar file. Starting the Watchdog.jar file is done in the same way as in Section 5.2 with 

the Watchdog_Track.jar file. However, by starting the program through double-clicking the JAR 

file, one can exit the program by closing the window the program produces. 

Once the program runs, it loops infinitely as it constantly receives images taken by the 

NAO. It converts the images from a byte array into a Buffered Image and then continuously 

updates a Frame with the image. What is produced is a window of a video feed of the NAO’s 

point of view. 

 In this test, the program was able to successfully create a JFrame that added an image to 

it. This image was the converted image from the NAO. This can be seen in the figure below. 

 

Figure 6: JFrame containing image from NAO 

 

The image transmission requests are done in a while loop. Updating the JFrame’s image through 

the use of the repaint method, the window becomes a live video feed of the NAO’s point of view. 

This is illustrated in Figure 7. 

 Testing was also done with different resolutions. What was found was that the most 

smooth feed resulted in the lowest resolution, 320x240. When tests are performed with the next 

resolution up, 640x480, the feed is considerably choppier. This is most likely due to the transfer 

of image data via the current network. An image with more pixels than 320x240 would take 

longer to be transmitted via the network and then converted into a Buffered Image. 



Serrano 15 

 

 

 

 

 

 

Figure 7: An Illustration of the NAO’s live video feed 

 

 



Serrano 16 

5.3 Audio & Head + Video: Watchdog Test 

 In testing both components together, the Watchdog concept would be theoretically 

complete. The NAO would be able to locate sound, face the sound, and transmit what it is seeing 

via the Internet. Both these components could be compiled into one large file instead of the two 

separate files, Tracker and watch. However, after running both files separately and 

simultaneously, it was found that the NAO successfully became a watchdog, despite two 

different programs running at the same time.  

 Once both components ran together smoothly and independent of each other, the decision 

was made to compile the whole package as is and, if need be, create two separate JAR files: one 

to ‘see’ what the robot is seeing (Watchdog.jar), and the other to have the robot track sound 

(Watchdog_Track.jar). Extracting the program into JAR files proved difficult however. This is 

because the program requires an external java library, which is the NAOqi library (called jnaoqi). 

When the JAR files are extracted and ran, it loses this external library. In order to solve this, a 

plugin for Eclipse is used called FatJar, which exports the program as a JAR file with the 

external library packaged into it [4]. However, it may still be necessary to have the library DLL 

file (or jnilib file on Macs). Having the JAR file and the extra library files is the bare minimum 

required to export the Watchdog program and run it on any computer connected to the NAO on 

the same network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Serrano 17 

6. Conclusion 

 The NAO Watchdog involves using the NAO robot to act as a security camera. It takes 

live images from the NAO’s camera modules and returns them to a client computer. It can then 

use those images to create a live video feed. The robot also finds the source of sound and turns 

its head to keep a live feed on the source. This allows the robot to act dynamically and track 

objects and report footage of the object. 

 In this project, the NAO Watchdog was fully implemented. However, the operation of the 

Watchdog is far from smooth. In order for full implementation to be achieved, the program 

requires the NAO to track sound, move its head to face the sound, and transmit live images to the 

client. This project successfully implemented the transmission of images into a live video feed 

on the client computer. The feed can be a smooth 30 fps as long as a low resolution, such as 

320x240, is used. Tracking and facing sound, however, was trickier, as the motion of the robot’s 

head depend on precise angles. Since sound can come from multiple angles, especially in a small 

room, the exact location of the source of the sound may be difficult to determine for the NAO. 

Thus, when localizing the sound, the angles of azimuth and elevation, two angles needed for 

positioning the head, were often accurate but imprecise. This causes the head to turn and often 

miss the target as the target may have already walked past the robot. 

 On another note on the sound, sometimes the NAO will detect sounds that are not very 

audible to the human ear. This causes the NAO to turn its head towards rather random 

events/objects. In order to avoid this, a third element of the Sound Data array is used: this is the 

confidence (explained in Section 3). The confidence is on a scale of zero to one and determines 

the confidence to which the NAO heard a definite sound. After thorough testing, it was 

determined that anything above 0.3 confidence is a good enough indicator of human/loud 

sounds. Using this parameter, the Watchdog was able to be slightly adjusted to become more 

precise in its tracking. 

 In the final development of the Watchdog project, it was discovered that the two 

components of the Watchdog (tracking and video transmission) could be run separately or 

simultaneously on the NAO robot. This allowed the creation of two distinct JAR files that can be 

run together or independently. Or, one could run the Watchdog.jar file to have the whole 

program run at once, automatically. For this project, two JAR files were created: Watchdog.jar 

and Watchdog_Track.jar. The latter is the program that tracks sound and positions the NAO’s 



Serrano 18 

head towards the sound. When running this JAR file, it was found that there was no way to exit 

the client once the program had started. This has obvious implications. To fix this and provide a 

way to exit the client, the program would need to include event handlers and special events on 

closing. A window with a ‘CLOSE’ button could suffice. For the Watchdog.jar file, the program 

closes properly when exiting the window it creates. Special events can be programmed on 

closing for this as well. 

 Further extension of this project can include making the robot more responsive to sound, 

thus, making the robot more apt at tracking. The Watchdog project can also be implemented to 

use motion tracking. This is done by first determining where an object is via sound, then turning 

to face the object. Once it has detected the object, the robot will then track it via the camera 

module and the object’s motion. Finally, the Watchdog can truly become a Watchdog by 

implementing full-body motion into the robot, so the robot may follow and track the target more 

efficiently. Having a robot that can track by following on foot is one step away from military 

drones. 

 

 

 

 

 

 

 

 

 



Serrano 19 

7. References 

[1]"NAO Doc." Aldebaran Robotics. Aldebaran Robotics, 2012. URL: 

<https://community.aldebaran-robotics.com/doc/1-14/>. 

[2] Beiter, M. , B. Coltin, S. Liemhetcharat. An Introduction to Robotics with NAO: Aldebaran 

Robotics, 2012. 

[3] Hughes, A. "Working with the NAO Humanoid Robot." Florida Gulf Coast University, 31 

August 2013. URL: 

<http://itech.fgcu.edu/faculty/zalewski/projects/files/HughesWorkingWithNaoZV7.pdf>. 

[4] Hechler, F. “Fat Jar Eclipse Plug-In.” SourceForge, 02 December 2013. URL: 

<http://fjep.sourceforge.net>. 

 

 

 

 

 

 

 

 

 

 

http://itech.fgcu.edu/faculty/zalewski/projects/files/HughesWorkingWithNaoZV7.pdf


Serrano 20 

8. Appendix 

 The appendix is divided into two categories, each containing its own file/program. 

 

8.1 Tracker 
import com.aldebaran.proxy.*; 

 

public class Tracker { 

    public static String NAO_IP = "69.88.163.51"; 

    public static int NAO_PORT = 9559; 

 

    public static void main(String[] args) { 

        ALTextToSpeechProxy tts = new ALTextToSpeechProxy(NAO_IP, 

NAO_PORT); 

        ALMotionProxy robot = new ALMotionProxy(NAO_IP, NAO_PORT); 

     ALAudioSourceLocalizationProxy locator =  

          new ALAudioSourceLocalizationProxy(NAO_IP, NAO_PORT); 

 

      

     //Loops infinitely to track movement 

        while (true) { 

         locator.subscribe("SoundLocal"); 

          

         //This statement calls a method to get audio source data 

         float [] headPosition = soundLocalizer(locator); 

          

         //Prints 6D Vector array for position of sound 

         System.out.print("Set: "); 

         for (int i=0; i<3; i++) { 

          System.out.print(headPosition[i] + " | "); 

         } 

         System.out.println();         

          

         //MOVING 

         //tts.say("I see you."); 

         robot.wakeUp(); 

         try { Thread.sleep(100); } 

         catch (Exception e) {}; 

          

         //Sets the current head position of the robot 

         //if confidence interval is above 0.3 confidence 

         if (headPosition[2] > 0.30f || headPosition[2] < 0.1f) { 

          robot.setAngles( 

           new Variant( 

             new String[]{"HeadYaw", "HeadPitch"}),  

           new Variant( 

             new float[]{headPosition[0], 

headPosition[1]}), 

           0.1f); 

         } 

 



Serrano 21 

         try { Thread.sleep(100); } 

         catch (Exception e) {}; 

          

         //Prints the current head position of the robot 

         /*System.out.print("Get: "); 

         for (int i=0; i<6; i++) { 

          System.out.print( 

            robot.getPosition("Head", 2, true)[i] + " | 

"); 

         }*/ 

          

         System.out.println(); 

         robot.rest(); 

         locator.unsubscribe("SoundLocal"); 

        } 

    } 

     

    public static float[] 

soundLocalizer(ALAudioSourceLocalizationProxy loc) { 

      

     //Create the proxy for Memory 

     ALMemoryProxy mem =  

          new ALMemoryProxy(NAO_IP, NAO_PORT); 

      

     //Sets the audio sensibility to detect quiet or loud sounds 

     loc.setParameter("Sensibility", new Variant(0.9f)); 

 

        //Store data in Variant type 

     Variant soundData = new Variant(mem.getData( 

       ("ALAudioSourceLocalization/SoundLocated")));  

      

     //Converts Variant data to float array, 

     //just takes the azimuth and elevation angles 

     float[] pos = soundData.getElement(1).toFloatArray(); 

     System.out.println("azimuth: " + pos[0] + 

       " | Elevation: " + pos[1]); 

     return pos; 

    } 

} 

 

 

 

 

 

 

 

 

 

 

 



Serrano 22 

8.2 Watcher 
import java.awt.image.BufferedImage; 

import java.awt.*; 

import javax.swing.*; 

 

import com.aldebaran.proxy.*; 

 

public class watch { 

  

 private static BufferedImage img; 

 private static String NAOQI_IP = "69.88.163.51"; 

 private static int NAOQI_PORT = 9559; 

  

 /* 

  * This method first creates a Frame for the video feed. 

  * It then registers a proxy on the Video Device for the 

  * NAO. It retrieves an image and converts the image into 

  * a Buffered Image using the convert() method. 

  * It then loops and continuously grabs images from 

  * the NAO, converts, and displays them in the Frame. 

  */ 

 public static void insertImage() { 

  //Creating the window 

  JFrame frame = new JFrame("Watchdog"); 

  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  frame.setPreferredSize(new Dimension(320, 240)); 

  JLabel label = new JLabel("",  

    new ImageIcon(), JLabel.CENTER); 

   

  //Create proxy for the Video Device 

  ALVideoDeviceProxy videoDevice =  

    new ALVideoDeviceProxy(NAOQI_IP, NAOQI_PORT); 

   

  //Loop infinitely to update image in the Frame 

  while (true) { 

   videoDevice.subscribeCamera("WatchDog", 0, 1, 11, 30); 

   Variant ret = videoDevice.getImageRemote("WatchDog"); 

   videoDevice.unsubscribe("WatchDog"); 

    

   // Video device documentation explain that image is 

element 6 

   Variant imageV = ret.getElement(6); 

    

   // display image from byte array 

   byte[] binaryImage = imageV.toBinary(); 

    

   //Updates/Repaints the image into the frame  

   frame.getContentPane().add(label, 

BorderLayout.CENTER); 

   label.setIcon(new ImageIcon(convert(binaryImage))); 

   label.repaint(); 



Serrano 23 

    

   //Displaying the window 

   frame.pack(); 

   frame.setVisible(true); 

  } 

 } 

  

 /* 

  * This method coverts a byte[] of image data into a  

  * Buffered Image  for display 

  */ 

 public static BufferedImage convert(byte[] buff) { 

  //Converting the NAO image buffer into a usable image 

  int[] intArray; 

  intArray = new int[320*240]; 

  for(int i = 0; i < 320*240; i++) 

  { 

   intArray[i] = ((255 & 0xFF) << 24) | //alpha 

    ((buff[i*3+0] & 0xFF) << 16) | //red 

    ((buff[i*3+1] & 0xFF) << 8)  | //green 

    ((buff[i*3+2] & 0xFF) << 0); //blue 

  } 

   

  img = new BufferedImage(320, 240, 

BufferedImage.TYPE_INT_RGB); 

  img.setRGB(0, 0, 320, 240, intArray, 0, 320);  

   

  //Returns the converted image as a BufferedImage 

  return img; 

 } 

  

 public static void main(String args[]) { 

   

  //this method inserts an image continuously into a JFrame 

  insertImage(); 

 

 } 

} 

 

 


